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Abstract: In this study, we report a facile ligand-assisted
in situ hydrothermal approach for preparation of compact

[Al(OH)(1,4-NDC)] (1,4-NDC = 1,4-naphthalenedicarboxy-
late) MOF membranes on porous g-Al2O3 substrates,

which also served as the Al3 + source of MOF membranes.
Simultaneously, it was observed that the heating mode

exerted significant influence on the final microstructure

and separation performance of [Al(OH)(1,4-NDC)] mem-
branes. Compared with the conventional hydrothermal

method, the employment of microwave heating led to
the formation of [Al(OH)(1,4-NDC)] membranes composed

of closely packed nanorods with superior H2/CH4

selectivity.

Owing to their unprecedented pore architectures and adsorp-
tion functions, metal organic frameworks (MOFs) in form of

membranes have shown great potential in gas separation such
as H2 purification,[1] CO2 capture[2] and olefin/paraffin separa-

tion.[3] Apart from framework topology and elemental composi-

tion, the performance of MOF membranes was also significant-
ly influenced by their microstructures. For instance, it has been

demonstrated that ZIF-8 membranes prepared at room tem-
perature generally showed much higher C3H6/C3H8 selectivity

(&50) in comparison with those synthesized under solvother-
mal conditions due to reduced intercrystal defect densities.[4]

At present, diverse methodologies and technologies (such as

microwave-assisted heating,[1a, 5] counter diffusion,[3d, 6] chemical
vapor deposition[7] and electrospray deposition[8]) had been

employed to exert precise control over their microstructures.

Among them, microwave-assisted heating is particularly note-
worthy since not only the reaction time could be reduced sig-

nificantly, but also their microstructures and separation per-
formances may be tuned effectively.[1a, 5] For instance, Caro first

reported the synthesis of well-intergrown ZIF-8 membranes by
relying on microwave heating. Compared with conventional

solvothermal methods, not only the nucleation density on

porous TiO2 substrates was greatly enhanced, but also the syn-
thesis time was significantly reduced.[1a] At present, microwave

synthesis has been employed in the synthesis of a wide range
of high performance MOF membranes (like ZIF-7,[5a] MOF-5,[5b]

CAU-10-H[5c] and NH2-MIL-125(Ti)[5d]). Very recently single-mode
microwave heating was employed in the synthesis of highly c-

oriented NH2-MIL-125(Ti) membranes. Owing to the improved

microwave field uniformity, enhanced nonthermal effects and
higher absorption efficiency of single-mode microwave heat-

ing, the undesired twin growth was effectively suppressed.[5d] It
was noted that although it has been proved that microwave-

assisted heating could be employed to fabricate MOF mem-
branes, a straightforward comparison of microstructures and

separation performances of MOF membranes prepared by con-

ventional and microwave methods under identical synthetic
conditions was still rare. Moreover, the role of microwave irra-

diation played in MOF membrane synthesis still awaits further
elucidation.

[Al(OH)(1,4-NDC)] is representative of MOF materials with
two independent pore apertures of 7.4 a V 7.4 a and 3.0 a V

3.0 a, respectively (Figure 1).[9] Moreover, it further exhibits

preferential adsorption behaviors and exceptional aqueous sta-
bility. All these properties made [Al(OH)(1,4-NDC)] membranes
potentially attractive candidates for gas separation. Such stud-
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ies, however, have not been carried out except a tentative syn-

thesis on dense Si wafers.[10]

In this study, both conventional and microwave-assisted
heating were employed for in situ fabrication of [Al(OH)(1,4-

NDC)] membranes. Commercially available porous g-Al2O3 sub-
strates, which served as the sole Al3+ source of [Al(OH)(1,4-

NDC)] , were used. The precursor solution was prepared by
mixing the ligand 1,4-NDC in distilled and de-ionized (DDI) H2O

under vigorous stirring. In the next step, in situ hydrothermal

growth was carried out under both conventional and micro-
wave conditions (details were shown in experimental section).

Our results indicated that microwave irradiation exerted signifi-
cant influence on both microstructures (evolving from twinned

cube-like to rod-like shape) and separation performances (4.2-
and 1.6-fold increases in H2 permeance and mixed H2/CH4 se-
lectivity, respectively) of [Al(OH)(1,4-NDC)] membranes. To the

best of our knowledge, such huge discrepancies in microstruc-
tures and separation performances of MOF membranes caused
by microwave-assisted heating have been rarely observed
before.

Initially conventional hydrothermal growth was employed
for in situ fabrication of [Al(OH)(1,4-NDC)] membranes. After

the synthesis a well-intergrown [Al(OH)(1,4-NDC)] membrane

with a thickness of 2 mm was formed on the substrate (shown
in Figure 2 a,b,c). Moreover, it was observed that the mem-

brane surface had been fully covered with 1 mm-sized, twinned
cube-like crystallites. XRD pattern further confirmed that the

formed layer indeed belonged to [Al(OH)(1,4-NDC)] phase (Fig-
ure 3 a,b).

In contrast, microwave-assisted heating not only led to a sig-

nificant reduction in reaction time, but also gave rise to a sig-
nificant microstructural change. As shown in the Figure (Fig-

ure 2 d,e), after the synthesis rod-like [Al(OH)(1,4-NDC)] crystalli-
tes with an average diameter of 200 nm and length of 2 mm

were readily formed and in situ attached to the substrate (Fig-
ure 2 e). Moreover, most crystallites should be vertically aligned

on the substrate as confirmed by the cross-sectional image
(Figure 2 f). In contrast, the use of conventional heating under
the same reaction condition only led to sparse distribution of
[Al(OH)(1,4-NDC)] particles on the substrate surface, although
in some areas [Al(OH)(1,4-NDC)] particles were relatively dense-

ly packed (SI-1).
The distinct discrepancies in membrane microstructures

could be reasonably attributed to the uniform and high nucle-
ation rate of [Al(OH)(1,4-NDC)] grains on the substrate in a su-
persaturated precursor solution under microwave irradiation.[11]

It should be noted that such a morphological discrepancy was

Figure 1. Schematic illustration of the concept of microwave-assisted hydrothermal synthesis of [Al(OH)(1,4-NDC)] membranes. g-Al2O3 plates were served as
the substrate as well as Al3 + source.

Figure 2. SEM images of [Al(OH)(1,4-NDC)] membranes prepared by (a, b,
c) conventional hydrothermal growth at 180 8C for 24 h, and (d, e, f) micro-
wave-assisted hydrothermal growth at 160 8C for 2 h.
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also observed in conventional and microwave-assisted synthe-

sis of [Fe(OH)(1,4-NDC)] powders (an isostructural compound

of [Al(OH)(1,4-NDC)]),[12] and some unique phenomenon like
enhanced heating rate, superheating, hot pots and enhanced

dissolution of precursors induced by microwave-assisted heat-
ing may account for their morphological discrepancies.[13] On

the other hand, their discrepancy in crystallographic preferred
orientation could be interpreted by considering the tendency

of [Al(OH)(1,4-NDC)] crystals to be attached to porous g-Al2O3

substrates through their largest facets. In effect, this principle
has proven to be universal and has been widely reported in

the literature.[14, 15] For instance, a previous study on self-assem-
bly of zeolite microcrystals with different morphologies on 3-

chloropropyl-coated glass (CP-g) plates indicated that in case
cylindrical-shaped zeolite microcrystals were attached onto CP-
g plates, zeolite crystals self-assembled very tightly and verti-

cally. In contrast, hexagonal columnar zeolite microcrystals self-
assembled horizontally.[15] Such a difference in orientation was

attributed by the tendency of zeolite microcrystals to be at-
tached onto substrates through their largest facets. By analogy,

herein it was reasonable to assume that twinned cuboid-
shaped [Al(OH)(1,4-NDC)] microcrystals prepared under con-

ventional hydrothermal conditions tended to attach to the
substrate along the ab-axis direction whereas cylinder-shaped
[Al(OH)(1,4-NDC)] crystals synthesized by microwave heating

were inclined to adhere to the substrate along the c-axis direc-
tion. It should be emphasized that the selected area electron

diffraction (SAED) pattern of [Al(OH)(1,4-NDC)] powders pre-
pared by additional hydrothermal growth clearly demonstrated

that the nanorod shown in the TEM bright-field image (Fig-

ure 4 a) was oriented almost along the [110] zone axis so that
the longitudinal axis of the nanorod was indeed along the c-

axis (Figure 4 b).
In the next step, gas permeation tests were carried out. Ini-

tially, [Al(OH)(1,4-NDC)] membranes prepared under both con-
ventional and microwave conditions were impermeable to any

gas molecules since their micropores were still fully occupied

with solvent molecules. To open micropores, an on-stream
thermal activation was carried out by using a Wicke-Kallenbach

permeation cell by gradual increasing the operating tempera-

ture to 120 8C (ramping speed was 0.3 8C min@1) with H2-CH4

mixture as the feed gas and He as the sweep gas (PH2 = PCH4 =

PHe = 50 mL min@1). Under this condition, the permeance and
selectivity of H2/CH4 gas mixtures through [Al(OH)(1,4-NDC)]

membranes were further measured at 120 8C and 1 bar (more
details are shown in SI-2). It was found that the [Al(OH)(1,4-

NDC)] membrane prepared under conventional conditions

showed a H2/CH4 selectivity as high as 8.6, which had by far ex-
ceeded the Knudsen value (2.8) and thus was a clear indication

of the domination of molecular sieving mechanism (Figure 5).
In contrast, the membrane prepared under microwave condi-

tions showed a H2/CH4 selectivity of 13.3. Simultaneously, there
was a 4.2-fold increase in H2 permeance demonstrating con-

vincingly that microwave-assisted heating was indeed more ef-

fective for preparing high performance [Al(OH)(1,4-NDC)] mem-
branes.

Lower H2 permeance of the conventionally synthesized
[Al(OH)(1,4-NDC)] membrane could be partially ascribed to the

twinned microstructure (Figure 2 a). As was demonstrated in
previous studies, the generation of twins in molecular sieve
membranes would remarkably increase their mass transfer bar-

Figure 3. XRD patterns of (a) [Al(OH)(1,4-NDC)] powders and related mem-
branes prepared by (b) conventional hydrothermal growth and (c) micro-
wave-assisted hydrothermal growth. Diffraction peaks derived from porous
g-Al2O3 substrates were indicated by asterisk.

Figure 4. a) The TEM image of rod-shaped [Al(OH)(1,4-NDC)] powders pre-
pared by microwave-assisted hydrothermal growth at 160 8C for 2 h and
b) the corresponding SAED pattern.

Figure 5. Mixed H2/CH4 selectivity and H2 permeance of [Al(OH)(1,4-NDC)]
membranes prepared by conventional hydrothermal growth and micro-
wave-assisted hydrothermal growth, respectively.
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rier[16–18] possibly due to the narrowed cross-section of micro-
pores[19] or higher framework density at grain boundary re-

gions.[20] These effects might become more obvious with fur-
ther reduction of the grain size of [Al(OH)(1,4-NDC)] crystallites

due to a higher grain boundary density. On the other hand,
the vertical alignment of microwave-synthesized [Al(OH)(1,4-

NDC)] crystallites may also contribute to the increased H2 per-
meance due to an equivalent reduction in membrane thick-
ness. It should be emphasized that although there existed

open space between neighboring [Al(OH)(1,4-NDC)] grains, the
bottom section of the [Al(OH)(1,4-NDC)] membrane remained

defect-free and well-intergrown (shown in SI-3) thus maintain-
ing a high H2/CH4 selectivity.

To summarize, in this study [Al(OH)(1,4-NDC)] membranes
were in situ fabricated under both conventional and micro-

wave conditions. Porous g-Al2O3 disks, which also served as

Al3 + sources of MOF membranes, were utilized as substrates. It
was demonstrated that microwave irradiation not only remark-

ably reduced the reaction time from 24 h to 2 h, but also exert-
ed significant influence on both microstructures and separa-

tion performances of [Al(OH)(1,4-NDC)] membranes. In particu-
lar, [Al(OH)(1,4-NDC)] membranes prepared by microwave-as-

sisted heating showed dual enhancement of both H2 perme-

ance and H2/CH4 selectivity. We firmly believe that microwave-
assisted heating will further contribute to the performance en-

hancement of other MOF membranes.

Experimental Section

Chemicals, substrates and apparatus: 1,4-Naphthalenedicarboxyl-
ic acid (1,4-NDC, 95.0 wt.%) was bought from Wako Co. Ltd. with-
out further purification. Porous g-Al2O3 asymmetric porous sub-
strates were supplied by Fraunhofer IKTS. Diameter and thickness
of the substrate were 18 mm and 1 mm, respectively. The mean
pore diameter was 5 nm. Alternatively, Porous g-Al2O3 substrates
could also be easily prepared by first dip-coating thin layer of g-
AlOOH[21] on one side of porous a-Al2O3 substrates followed by cal-
cination at 500 8C. The microwave reaction was conducted on “flex-
iWAVE”-type microwave synthesis system of Milestone Company.

Preparation of the precursor solution: The precursor solution was
prepared by adding 0.324 g 1,4-NDC in 60 mL of DDI H2O. After-
wards the solution was vigorously stirred for 30 min before use.

In situ hydrothermal growth of [Al(OH)(1,4-NDC)] membrane: A
porous g-Al2O3 asymmetric porous substrate was vertically placed
into a 50 mL Teflon-lined stainless vessel, and 30 mL precursor solu-
tion was poured into the vessel. The vessel was sealed and put
into a convective oven with the temperature pre-heated to 180 8C.
After an elapsed time of 24 h, the vessel was taken out and natu-
rally cooled to room temperature in air. Finally, the film was taken
out, washed with copious amount of water and dried in a convec-
tive oven at 60 8C overnight.

Microwave-assisted synthesis of [Al(OH)(1,4-NDC)] membrane: A
porous g-Al2O3 asymmetric porous substrate was vertically placed
into a 200 mL Teflon-lined plastic vessel, and 60 mL precursor solu-
tion was poured into the vessel. The vessel was sealed and put
into the microwave-heating apparatus with the Max. Power of
400 W. The reaction temperature was heated to 160 8C in 10 min
and maintained at this temperature for 2 h. Consequently, the
vessel was taken out and naturally cooled to room temperature. Fi-

nally, the film was taken out, washed with copious amount of
water and dried in a convective oven at 60 8C overnight.
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