

Accepted Article

Title: Titanium-Oxo Cluster Assisted Fabrication of a Defect-Rich Ti-MOF Membrane Showing Versatile Gas-Separation Performance

Authors: Chen Wang, Yanwei Sun, Libo Li, Rajamani Krishna, Taotao Ji, Sixing Chen, Jiahui Yan, and Yi Liu

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 2022, e202203663

Link to VoR: https://doi.org/10.1002/anie.202203663

WILEY-VCH

RESEARCH ARTICLE

WILEY-VCH

Titanium-Oxo Cluster Assisted Fabrication of a Defect-Rich Ti-MOF Membrane Showing Versatile Gas-Separation Performance

Chen Wang,^[a] Yanwei Sun,^[a] Libo Li,^[b] Rajamani Krishna,^[c] Taotao Ji,^[a] Sixing Chen,^[a] Jiahui Yan,^[a] Yi Liu^{*[a],[d]}

[a]	C. Wang, Dr. Y. Sun, T. Ji, S. Chen, J. Yan, Prof. Y. Liu
	School of Chemical Engineering, State Key Laboratory of Fine Chemicals
	Dalian University of Technology
	Linggong Road 2, Ganjingzi District, Dalian 116024 (China)
	E-mail: diligenliu@dlut.edu.cn
[b]	Prof. L. Li
	College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization
	Taiyuan University of Technology
	Taiyuan 030024 (China)
[c]	Prof. R. Krishna
	Van 't Hoff Institute for Molecular Sciences
	University of Amsterdam, Science Park 904
	1098 XH Amsterdam, The Netherlands
[d]	Prof. Y. Liu
	Dalian Key Laboratory of Membrane Materials and Membrane Processes
	Dalian University of Technology
	Linggong Road 2, Ganjingzi District, Dalian 116024 (China)
	Supporting information for this article is given via a link at the end of the document.

Abstract: Although having shown great promise for efficient gas separation, relevant study on Ti-MOF membranes remains very scarce, owing to limited Ti source types and uncertain factors which dominate the separation properties. In this work, we pioneered the use of $Ti_8(\mu_2-O)_8(OOCC_6H_5)_{16}$ cluster as Ti source of MIL-125 membranes, which led to lower reaction temperature and higher missing-linker number within the framework and therefore, enhanced CO_2/N_2 adsorption selectivity. The MIL-125 membrane prepared by combining single-mode microwave heating with tertiary growth displayed an ideal CO_2/N_2 selectivity of 38.7, which ranked the highest among all pristine pure MOF membranes measured under comparable conditions. In addition, the ideal H_2/N_2 and H_2/CH_4 selectivity was as high as 64.9 and 40.7, thus showing great promise for versatile utility in gas separation.

Introduction

As an alternative to traditional energy-intensive gas separation approaches like cryogenic distillation, liquid absorption and adsorption, membrane-based gas separation has shown remarkable advantages in terms of low energy consumption, easy operation, eco-friendship and small footprint.^[1] Among various materials, metal-organic framework (MOF) has unique advantages in terms of tailorable pore aperture, adjustable functionality, and high surface areas. In particular, Ti-MOF has been considered a superb membrane material, owing to its excellent stability, appropriate pore size and unique adsorption behavior. MIL-125, which is representative of Ti-MOF materials, has a 3D framework with two kinds of cages (6.1 Å and 12.6 Å) and is accessible through the 5-7 Å microporous aperture. It consists of eight cyclic octamers of edge- and corner-sharing [TiO₅(OH)] octahedra Ti₈(µ₂-O)₈(µ₂-OH)₄ nodes connected by 12 of 1,4-Benzene dicarboxylate (BDC) linkers.^[2] Not only the relatively large pore size of MIL-125 warrants the high diffusivity of smaller-sized gases, but also its textural and functional properties can be tailored for specific gases adsorption.^[3] Caro et al.^[4] first prepared NH₂-MIL-125(Ti) membranes showing decent H₂/CO₂ selectivity (~8) by secondary growth. More recently, we synthesized highly c-oriented ultrathin NH₂-MIL-125(Ti) membranes showing significantly enhanced H₂/CO₂ selectivity (24.8).^[5] Nevertheless, in comparison with some extensively studied MOF (like ZIF-8, HKUST-1 and UiO-66) membranes, relevant studies on polycrystalline Ti-MOF membranes remained scarce,[5] which could be, at least partially, attributed to limited types of titanium sources. For instance, titanium isopropoxide (TPOT) has been commonly employed as titanium source of Ti-MOF. However, it suffered from fast hydrolysis even under transient exposure to moisture in the air, resulting in uncontrollable nucleation and growth rates during Ti-MOF membrane formation.^[6] Alternatively, the use of layered TiS₂ as titanium source enabled better control of nucleation and growth rates of Ti-MOF membranes so that their mesoscopic structures (e.g., preferred orientation, membrane thickness, and grain boundary defects) could be precisely tuned. Nevertheless, it remained impractical to further tailor their microscopic structures (e.g., missing-linker defects, pore aperture, and pore size distribution) which in turn, may exert more profound effect on the separation performance.

Previous studies indicated that missing-linker defects exerted a significant influence on the separation performance of MOF membranes. For instance, Zhong et al.^[7] reported that diethanolamine-modified ZIF-8 membranes with abundant open metal sites displayed high C_3H_6/C_3H_8 selectivity. Park et al.^[8] reported that defect-engineered UiO-66-incorporated mixed-matrix membranes exhibited exceptional C_3H_6 permeability and C_3H_6/C_3H_8 selectivity, owing to increased porosity and open metal sites caused by missing-linker defects in UiO-66 nanofillers. Very recently, we prepared highly defective UiO-66 membranes showing superior CO_2/N_2 separation performance through combining ZrS₂ source with tertiary growth.^[9] Inspired by the

RESEARCH ARTICLE

above achievements, herein we are dedicated to preparing highperformance Ti-MOF membranes through precisely tuning missing-linker defects in the framework.

Titanium-oxo cluster, which represents a member of tetravalenttransition-metal-oxo cluster family, consists of inorganic metaloxide Ti-O-Ti cores capped with charge-compensating anions or -OH/-OH₂ pairs.^[10] Decent coordinative interaction between cluster cores and charge-compensating anions renders titaniumoxo cluster the ideal metal source of Ti-MOF membranes since not only the activation energy for the formation of Ti-MOF can be significantly reduced via preorganization of cluster cores in the precursor solution which results in milder conditions for the growth of well-intergrown Ti-MOF membranes, but also missing-linker defects in the framework can be precisely tuned through manipulation of linker exchange rates which may have a positive effect on the separation performance. Park et al.[11] prepared DGIST-1 exhibiting excellent photocatalytic activity by employing Ti₆O₆(OiPr)₆(t-BA)₆ cluster as titanium source, which led to not only a higher degree of crystallinity but also increased accessible surface areas. Serre et al.^[12] reported that the chemical environment and functionality of MIP-207 could be easily tuned through facile linker exchange with preformed $Ti_8(\mu_2$ - $O_{8}(acetate)_{12}(formate)_{4}$ (Ti₈AF) cluster. Compared with conventional TPOT, using Ti₈AF cluster source led to the formation of MIP-207 particles with not only superior CO₂/N₂ adsorption selectivity but also reduced synthesis duration. Very recently, Zhang et al.^[3a] synthesized FIR-125 containing Ti₈(µ₂-O)₈ nodes by employing titanium-oxo cluster as titanium source, which not only allowed easy tunning of the grain size but also gave rise to enhanced gas adsorption capacity. It should be noted that, although titanium-oxo cluster had proven to be ideal titanium source of Ti-MOF in powder form, there is still no report on the preparation of Ti-MOF membranes with titanium-oxo cluster source. Motivated by potential benefits derived from the titaniumoxo cluster, herein we pioneered the use of titanium-oxo cluster source for preparing high-performance Ti-MOF membrane.

MIL-125 has shown great promise for the application as gas adsorbents, smart photonic devices, and photocatalysis.^[2a, 13] Its potential as high-performance separation membranes, however, has not been fully explored yet. As a new member of titanium-oxo cluster family, Ti₈O₈(OOCR)₁₆ [R=C₆H₅] (Ti₈Ph), which consists of eight [TiO₆] octahedra ring linked by six μ_2 - and two μ_3 -O bridges,^[14] possesses a similar structure as the $Ti_8(\mu_2-O)_8(\mu_2-OH)_4$ node in MIL-125 framework, thereby making it attractive alternative to common titanium sources. Additionally, our recent study indicated that compared with conventional heating methods, using single-mode microwave heating enabled better control of the microstructure of NH₂-MIL-125 (Ti) membranes, owing to a higher microwave field intensity and uniformity.^[5] In the present work, with Ti₈Ph cluster as titanium source, highly defective MIL-125 membrane was prepared through combing single-mode microwave heating with tertiary growth (Figure 1). On the one hand, our research indicated that carrying out the reaction at lower temperatures enabled increasing missing-linker defects MIL-125 framework, which warranted high-affinity within interactions with CO₂ molecules at room temperature, thereby leading to high adsorption selectivity (14.3) as evidenced by the IAST model; on the other hand, relatively large pore size of MIL-125 warranted high diffusivity of smaller-sized gases through the membrane. As a result, not only the ideal CO₂/N₂ selectivity ranked the highest among all polycrystalline MOF membranes measured under similar conditions, but also the Robeson Upper Bound 2008 was overcome for versatile gas pairs. Most importantly, we found that only by using Ti₈Ph cluster source could high-performance MIL-125 membranes be prepared. It is expected that this metal-oxo cluster-based protocol could bring new insights into diverse high-performance MOF membrane preparations.

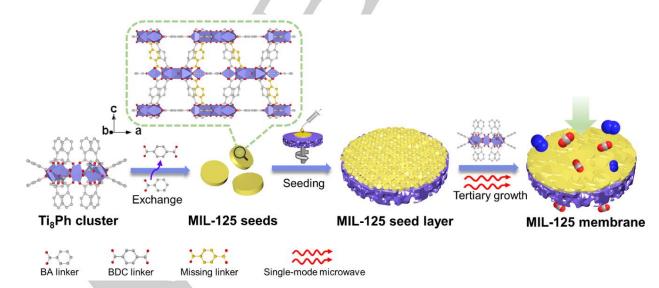


Figure 1. Schematic illustration of the preparation of defective MIL-125 membrane with Ti₈Ph cluster source through combing single-mode microwave heating with tertiary growth (BA: benzoic acid; BDC: terephthalic acid).

Results and Discussion

Our first step involves the synthesis of Ti₈Ph cluster according to a previous procedure with slight modification.^[14] Relevant SEM images indicated that obtained products exhibited a well-defined needle shape (**Figure 2a**). The corresponding XRD pattern

RESEARCH ARTICLE

coincided well with that of standard Ti_8Ph phase, implying that a pure Ti_8Ph cluster phase had been formed (**Figure 2b**).

Subsequently, two kinds of MIL-125 powders were prepared using Ti₈Ph cluster and TPOT as titanium sources, respectively. Our results indicated that uniform MIL-125 powders with an average size of 240 nm (**Figure 2c**, **d** and **Figure S1**) could be obtained by conducting linker exchange reaction between Ti₈Ph cluster and BDC linkers at temperature as low as 100 °C (denoted as MIL-125 (Ti₈Ph, 100 °C)). In contrast, the threshold temperature required for full conversion of TPOT to MIL-125 was 150 °C (denoted as MIL-125 (TPOT, 150 °C)) (**Figure S2**), indicating that using Ti₈Ph cluster source significantly lowered the activation energy required for MIL-125 formation.

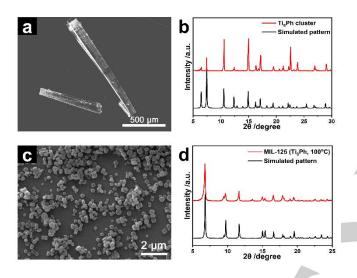


Figure 2. (a) SEM image of Ti_8Ph cluster. (b) XRD patterns of prepared Ti_8Ph cluster and simulated Ti_8Ph cluster. (c) SEM image of MIL-125. (d) XRD patterns of prepared MIL-125 (Ti_8Ph , 100 °C) and simulated MIL-125.

Considering the potential impact of missing-linker defects on the separation performance of MIL-125 membranes, herein the missing-linker number, which was widely used for quantitative evaluation of missing-linker defects, of the above MIL-125 powders was determined by TG analysis (shown in Figure 3a). According to the method proposed by Lillerud et al.^[15], the missing-linker number per $Ti_8(\mu_2-O)_8(\mu_2-OH)_4$ node in the framework of MIL-125 (Ti₈Ph, 100 °C) reached 2.2, which was 5.5 times higher than MIL-125 (TPOT, 150 °C), implying that employing Ti₈Ph cluster source resulted in a significant increase in missing-linker number. In the next step, textural properties of the above MIL-125 powders were studied further. As shown in Figure S3a, N2 adsorption/desorption isotherms revealed that MIL-125 (Ti₈Ph, 100 °C) exhibited a typical type I isotherm with BET surface area of 1453 m²·g⁻¹, pore volume of 0.69 cm³·g⁻¹, and pore size centering at 0.63 nm, which were all considerably higher than those of MIL-125 (TPOT, 150 °C) (1286.6 m²·g⁻¹, 0.60 cm³·g⁻¹ ¹, and 0.62 nm, respectively). Moreover, the CO₂ adsorption

capacity of MIL-125 (Ti₈Ph, 100 °C) (103.42 m³·g⁻¹) measured under ambient conditions was much higher than that of MIL-125 (TPOT, 150 °C) (53.05 m³·g⁻¹) while maintaining similar N₂ adsorption capacity (Figure S3b). Much higher adsorption capacity of CO₂ than that of N₂ can be attributed to preferential adsorption of CO₂ on coordinatively unsaturated open metal sites in MIL-125 framework.^[16] Moreover, CO₂/N₂ ideal adsorbed solution theory (IAST) selectivity of the above MIL-125 powders was calculated according to CO2 and N2 adsorption isotherms under ambient conditions (Figure 3c, d). CO_2/N_2 ($V_{CO2}:V_{N2}$ = 50:50, 0-1 Bar) IAST selectivity of MIL-125 (Ti₈Ph, 100 °C) (32.2) was around three times higher than that of MIL-125 (TPOT, 150 °C) (11.4), implying that both CO₂ adsorption capacity and CO₂/N₂ adsorption selectivity were positively associated with the missinglinker number in MIL-125 framework, which coincided well with previous research.^[17] The fitting curves of CO₂ and N₂ based on the original experimental adsorption data were shown in Figure S4, demonstrated that the fitting results of the two molecules are of good accuracy. We therefore concluded that possessing higher missing-linker number in the framework was in favor of enhancing the CO₂/N₂ separation performance of MIL-125 membranes. Moreover, the unary IAST selectivities were plotted by dashed lines in Figure 3c, d, calculated based on the unary isotherms (Figure S3b), using the partial pressures in the mixture to calculate the loadings. The ratio of the CO₂/N₂ mixture IAST selectivities to unary IAST selectivities for MIL-125 (Ti₈Ph, 100 °C) and MIL-125 (TPOT, 150 °C) were 1.8 and 1.3 at 100 kPa, respectively. In addition, the MIL-125 pore occupancies at 1 bar were less than 10%, therefore, the differences in the IAST selectivities for mixtures and unary selectivities are not large.

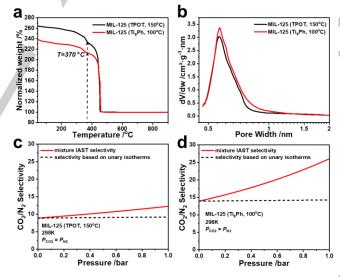


Figure 3. (a) TG curves of MIL-125 (TPOT, 150 °C) and MIL-125 (Ti₈Ph, 100 °C). (b) Pore size distributions of the above samples based on the H-K model. IAST selectivities for mixtures (V_{CO2} : V_{N2} = 50:50, 0-1 bar) and unary selectivities of (c) MIL-125 (TPOT, 150 °C) and (d) MIL-125 (Ti₈Ph, 100 °C).

VIANUSCript

RESEARCH ARTICLE

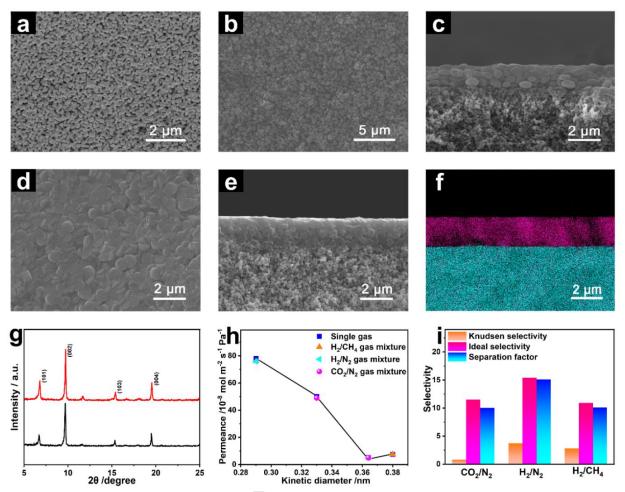
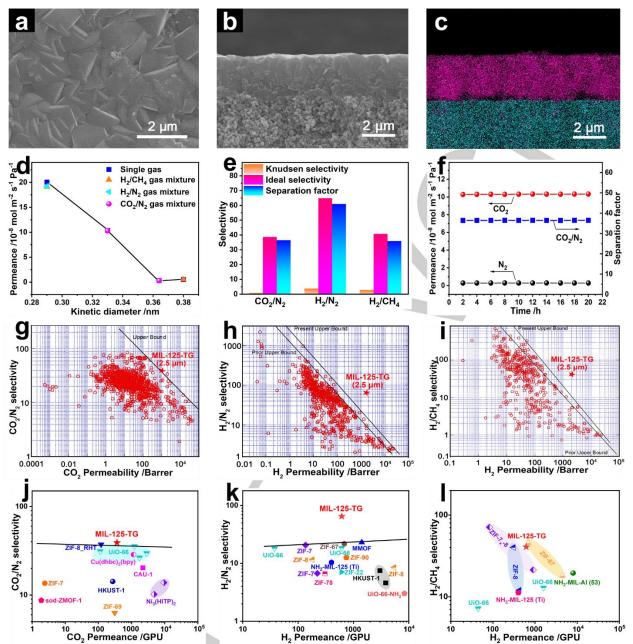


Figure 4. (a) Top SEM image of porous a-Al₂O₃ substrate. Top and cross-sectional SEM images of (b, c) MIL-125 seed layer and (d, e) MIL-125-SG. (f) Crosssectional EDXS mapping of MIL-125-SG (color code: Ti = red; AI = blue). (g) XRD patterns of MIL-125 seed layer (black line) and MIL-125-SG (red line). (h) Singlegas and mixed-gas permeation properties of MIL-125-SG under ambient conditions. (i) The Knudsen selectivity, ideal selectivity and SF of CO₂/N₂, H₂/N₂, and H₂/CH₄ gas pairs on MIL-125-SG.

Considering the potential impact of temperature on the missinglinker number in MIL-125 framework, herein MIL-125 powders were further synthesized at higher temperatures (120 °C, 140 °C, and 160 °C) using Ti8Ph cluster source. TG results (Figure S5) indicated that missing-linker numbers in MIL-125 framework decreased sharply with increasing temperature, resulting in a decrease of both CO₂ adsorption capacity and CO₂/N₂ adsorption selectivity (Figure S6). Moreover, the isosteric heats (~21.5 kJ·mol⁻¹) of MIL-125 (Ti₈Ph, 100 °C) were calculated according to the CO₂ adsorption isosteres in a temperature range from 298 to 363 K (Figure S7) via the Clausius-Clapevron equation, which was within the results previously reported in the literature.^[18] Therefore, MIL-125 (Ti8Ph, 100 °C), which exhibited the highest missing-linker number and therefore, the highest CO₂ adsorption capacity and CO₂/N₂ adsorption selectivity, were chosen as seeds for the MIL-125 membrane preparation.


Subsequently, the spin-coating technique was employed to deposit MIL-125 (Ti $_8\text{Ph},\,100~^\circ\text{C})$ on the porous a-Al $_2\text{O}_3$ substrate. As shown in Figure 4a, b, after spin-coating under optimized conditions, a uniform seed layer with thickness of 1.4 µm was obtained. Corresponding XRD pattern indicated that prepared MIL-125 seed layer was preferentially (00I)-oriented.

In the next step, secondary growth was carried out to seal intergranular gaps in the MIL-125 seed layer, during which the Ti₈Ph cluster was served as titanium source and the temperature was kept at 100 °C for maximizing the missing-linker number in the membrane. Relevant SEM images and EDXS pattern (Figure 4c-e) indicated that after single-mode microwave heating at 100 °C for 70 min, a well-intergrown MIL-125 membrane with thickness of 1.7 µm was obtained (denoted as MIL-125-SG). Corresponding XRD pattern (Figure 4f) confirmed that prepared MIL-125-SG remained preferentially (00I)-oriented. Measurement equipment for single and mixed gas permeation was shown in Figure S8. Gas permeation results (Figure 4g, h and Table S1) indicated that ideal CO2/N2, H2/N2 and H2/CH4 selectivity of the MIL-125-SG reached 11.5, 15.4 and 10.9, respectively, which was much higher than the corresponding Knudsen selectivity (0.8, 3.74 and 2.83, respectively), thereby confirming the existence of few grain boundary defects in the membrane. In addition, prepared membrane maintained high H_2 permeance of 7.8×10^{-7} mol·m⁻²·s⁻¹·Pa⁻¹.

Manuscr

cepted

RESEARCH ARTICLE

Figure 5. (a) Top and (b) cross-sectional SEM images of MIL-125-TG. (c) Cross-sectional EDXS mapping of MIL-125-TG (color code: Ti = red; Al = blue). (d) Single-gas and mixed-gas permeation properties of MIL-125-TG under ambient conditions. (e) The Knudsen selectivity, ideal selectivity and SF of CO_2/N_2 , H_2/N_2 and H_2/CH_4 gas pairs through MIL-125-TG. (f) Long-term stability of MIL-125-TG under ambient conditions. Comparison of (g) CO_2/N_2 , (h) H_2/N_2 and (i) H_2/CH_4 separation performances of MIL-125-TG with their respective 2008 Robeson upper bounds. (j) Comparison of CO_2/N_2 separation performance of MIL-125-TG with pristine MOF membranes measured under comparable conditions. Comparison of (k) H_2/N_2 and (l) H_2/CH_4 separation performance of MIL-125-TG with pristine 3D MOF membranes measured under comparable conditions. Detailed data were listed in Table S3-S5.

Afterwards, tertiary growth was carried out to further eliminate grain boundary defects in the membrane. Relevant SEM images (**Figure 5a, b**) showed that prepared MIL-125 membrane (denoted as MIL-125-TG) remained well-intergrown while the thickness was increased to 2.5 μ m. Simultaneously, a clear boundary between the MIL-125 top layer and underlying porous α -Al₂O₃ substrate existed in the cross-sectional EDXS pattern (**Figure 5c**), indicating that the formed MIL-125 top layer did not penetrate deep into porous α -Al₂O₃ substrate pores, which was beneficial for reducing the diffusion barrier. Corresponding XRD pattern (**Figure S9**) indicated that prepared MIL-125-TG

remained preferentially (00I)-oriented. The dye molecule rejection test was conducted to evaluate whether the grain boundaries are indeed further removed after the tertiary growth. Since the molecular size of congo red (CR) dyes (2.53×0.73 nm) is larger than the pore size of MIL-125 but smaller than that of the grain boundary defect,^[19] the CR rejection rate could be a true reflection of the grain boundary defect structure of the corresponding MIL-125 membrane. The dye rejection test results as shown in **Figure S10** indicated that the CR rejection rate of MIL-125-TG reached 99.53%, which was higher than that of MIL-125-SG (98.48%),

RESEARCH ARTICLE

which vividly confirmed that majority of grain boundaries were removed after the tertiary growth.

Gas permeation results (**Figure 5d, e** and **Table S2**) indicated that ideal CO₂/N₂, H₂/N₂ and H₂/CH₄ selectivity of prepared MIL-125-TG sharply increased to 38.7, 64.9 and 40.7, respectively, making the overall separation performance well exceeding their respective Robeson 2008 upper bound lines (**Figure 5g-i**).^[20] Moreover, according to the sorption-diffusion model, the permeation selectivity (S_{perm}) may be expressed as the product of the adsorption and diffusion selectivities: S_{perm} = S_{ads} × S_{diff} Since S_{ads} of the CO₂/N₂ gas pair reached 14.3 (based on the IAST theory), correspondingly, the S_{diff} was calculated to be 2.7. Therefore, the excellent CO₂/N₂ separation performance of the MIL-125-TG could be mainly attributed to the high CO₂/N₂ adsorption selectivity.

We further investigated long-term stability of prepared MIL-125-TG (Figure 5f). After continuous operation over 20 h, both CO₂ permeance and separation factor (SF) of CO₂/N₂ remained unchanged, which was indicative of excellent operation stability. In particular, the ideal CO₂/N₂ selectivity of the MIL-125-TG was the highest among all pristine polycrystalline MOF membranes (Figure 5j and Table S3) measured under comparable conditions.^[9, 20-21] It should be noted that besides the CO₂/N₂ gas pair, MIL-125-TG membrane also exhibited excellent H₂/N₂ and H₂/CH₄ selectivity. In effect, many literatures have reported microporous materials with relatively large pores but enhancing H₂/N₂ or H₂/CH₄ separations. For instance, Liu et al. prepared well-intergrown, highly c-oriented ultrathin 2D Cu-TCPP (~5.4 Å) membranes on porous α -Al₂O₃ substrates, which displayed H2/CH4 selectivity of ~50[22]; Zhu et al. synthesized large pore $(7.5 \text{ Å}) \text{ NH}_2\text{-MIL-53}$ (AI) membranes displaying high SF for H₂/N₂ (23.9) and H₂/CH₄ (20.7) gas mixtures, respectively^[23]; Li et al. fabricated UiO-66 (~6.0 Å) membranes with high H₂/N₂ SF (22.4)^[21c]; Pinnau et al. prepared AB-type ladder TPIM-1 (~5.5 Å) membranes with high selectivity for H_2/N_2 (~50) and H_2/CH_4 (~53) gas paris^[24]; Cooper et al. synthesized porous organic cage (~5.8 Å) membranes displaying the H_2/N_2 selectivity as high as $33^{[25]}$. It was highly possible that the unique framework topology of MIL-125 contributed to enhanced H_2/N_2 and H_2/CH_4 separations. In addition, preferred c-orientation, the low reaction temperature and the conduction of tertiary growth were beneficial for reducing grain boundary defects and therefore, enhancing H₂/N₂ and H₂/CH₄ separations of prepared MIL-125 membrane. The ideal H₂/N₂ and H₂/CH₄ selectivity were also superior to most pristine polycrystalline MOF membranes reported in the literature (Figure 5k, I and Table S4, S5), thereby showing a versatile utility for efficient gas separation on diverse occasions.

Considering its potential applications in industrial separation of CO₂ from flue gases, the CO₂/N₂ separation performance of prepared MIL-125-TG was further studied by simulating the composition of flue gases (V_{CO2}:V_{N2} = 15:85). Gas permeation results indicated that both CO₂ permeance and CO₂/N₂ SF remained largely unchanged (1.1×10⁻⁷ mol·m⁻²·s⁻¹·Pa⁻¹ and 35.9, respectively), which was in sharp contrast to other CO₂-permselective MOF (e.g., UiO-66 and CAU-1) membranes whose CO₂/N₂ selectivity sharply decreased with decreasing CO₂/N₂ ratio on the feed side ^[21g, 21h] and therefore, quite advantageous for stable operation under varying working conditions.

Finally, the effect of operating temperature on the CO_2/N_2 separation performance of prepared MIL-125-TG was investigated. As shown in **Figure S11**, the CO_2 permeance first

increased with the elevation of temperature and reached maximum value at 90 °C, while further increasing the temperature led to decreased CO₂ permeance. In contrast, the N₂ permeance steadily increased upon elevating temperature, resulting in a steady decrease in SF of CO₂/N₂. To study CO₂ permeation kinetics in the MIL-125 framework in detail, the sorption-diffusion model was employed to investigate the variation trend of adsorption coefficient (S_i) and diffusion coefficient (D_i) for CO₂. The plots of P_{CO2} , D_{CO2} , and, S_{CO2} against temperature were shown in Figure S12, which preliminarily proved that CO2 permeation process was dominantly controlled by diffusion in the case that temperature was lower than 363 K, while it became adsorption-controlled when the temperature became higher than 363 K. Furthermore, we calculated the activation energies of permeability (E_p) , heats of adsorption (negative enthalpy of adsorption: $-\Delta H$) and activation energies of diffusion (E_D) for CO₂ (**Table S6**) based on the Arrhenius plots for the permeability, S_{CO2} and D_{CO2} in temperature ranges of 303 to 333 K. 333 to 363 K. 363 to 393 K, and 393 to 423 K (Figure S13). To summarize, the above results vividly confirmed that the CO₂ permeability was mainly controlled by diffusion at 303~363 K, while adsorption played a dominant role at 363~423 K.

Considering the potential impact of titanium source on the separation performance of MIL-125 membranes, as а comparative experiment, MIL-125 membranes were further prepared by using 240 nm-sized MIL-125 (TPOT, 150 °C) (Figure S14a) as seeds and TPOT as titanium source during membrane growth while keeping other synthetic conditions unchanged. Our experimental results indicated that even after tertiary growth at 100 °C for 70 min, prepared MIL-125 membrane remained poorly intergrown (Figure S14b-e), which might be attributed to relatively high activation energy required for the $Ti_8(\mu_2-O)_8$ OH)₄ node formation before the membrane growth. As a result, elevating the temperature to 160 °C was indispensable for the well intergrowth between adjacent MIL-125 crystallites (Figure S15).^{[5,} ^{26]} Gas permeation results indicated that ideal CO₂/N₂, H₂/N₂ and H₂/CH₄ selectivity of the MIL-125 membrane synthesized at 160 °C was only 5.3, 7.0 and 1.5 (Table S7 and S8), which could be ascribed to relatively low missing-linker number (~0.4) in the membrane, resulting in lower CO₂/N₂ adsorption selectivity and therefore, inferior CO₂/N₂ separation performance.

To investigate the impact of heating mode on the separation performance, MIL-125 membranes were further prepared by convective heating for comparison. As shown in Figure S16, substantial voids and cracks remained visible in the membrane even after prolonged growth (24 h). Simultaneously, we observed that substantial MIL-125 particles (mass: 90 mg, yield: 92%) were spontaneously formed and sedimented to the bottom of the vessel after the reaction (Figure S17). Accordingly, failure of wellintergrown MIL-125 membrane formation could be ascribed to excessive MIL-125 nucleation and growth in the bulk solution, resulting in over-consumption of nutrients there and therefore, inadequate nutrient supply for sealing intergranular gaps in the membrane. In contrast, owing to the nucleation bottleneck effect, only a small amount of amorphous powders was generated in the bulk solution in the case of single-mode microwave heating, resulting in effective suppression of MIL-125 nucleation in the bulk solution and therefore, sufficient nutrient supply for the formation of well-intergrown MIL-125 membranes.[5, 26]

To investigate the influence of reaction temperature on the separation performance, MIL-125 membranes were further

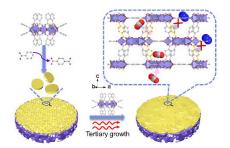
prepared at 160 °C with Ti₈Ph cluster source while keeping other reaction conditions unchanged. SEM results (**Figure S18**) indicated that after tertiary growth, a well-intergrown, 3.8 µm-thick MIL-125 membrane was obtained. Gas permeation results indicated that ideal CO₂/N₂, H₂/N₂ and H₂/CH₄ selectivity of the membrane was 9.0, 8.3 and 5.2, respectively (**Table S9**). The relatively low selectivity could be attributed to effective elimination of missing-linker defects (missing-linker number: 0) in the framework at such a high temperature, resulting in lower CO₂/N₂ adsorption selectivity.

Conclusion

With Ti₈Ph cluster as titanium source, high defective MIL-125 membrane was successfully fabricated through combining singlemode microwave heating with tertiary growth in this study. Employing Ti₈Ph cluster source led to not only a lower reaction temperature required for the formation of well-intergrown MIL-125 membrane but also a higher missing-linker number within the framework, resulting in enhanced CO₂/N₂ adsorption selectivity. Prepared MIL-125 membrane exhibited an ideal CO₂/N₂ selectivity of 38.7, which ranked the highest among all pristine polycrystalline MOF membranes measured under similar conditions. Of particular note, simulated flue gas separation experiment indicated that both CO_2 permeance and CO_2/N_2 SF (35.9) remained unchanged, which was in sharp contrast to other CO2-permselective MOF membranes whose CO2/N2 selectivity sharply decreased with decreasing CO₂/N₂ ratio on the feed side, which was quite advantageous for stable operation under varying working conditions. In addition, its ideal H₂/N₂ and H₂/CH₄ selectivity (64.9 and 40.7) were considerably high. It is anticipated that the concept of using metal-oxo clusters as metal sources could bring new insights into diverse high-performance MOF membrane preparations.

Acknowledgments

We are grateful to National Natural Science Foundation of China (22078039, 21922810), Science and Technology Innovation Fund of Dalian (2020JJ26GX026), Fok Ying-Tong Education Foundation of China (171063), Science Fund for Creative Research Groups of the National Natural Science Foundation of China (22021005), National Key Research and Development Program of China (2019YFE0119200), and the Technology Innovation Team of Dalian University of Technology (DUT2017TB01) for the financial support.


Keywords: gas separation • Ti-oxo cluster • membrane • structural defects • metal-organic frameworks (MOFs)

- [1] S. Hong, Y. Jeong, H. Baik, N. Choi, A. C. K. Yip, J. Choi, Angew. Chem. Int. Ed. 2021, 60, 1323-1331.
- a) M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G.
 Férey, *J. Am. Chem. Soc.* 2009, *131*, 10857-10859; b) S. Yang, L.
 Peng, S. Bulut, W. L. Queen, *Chem. Eur. J.* 2019, *25*, 2161-2178.
- a) Y. Sun, D.-F. Lu, Y. Sun, M.-Y. Gao, N. Zheng, C. Gu, F. Wang, J.
 Zhang, ACS Mater. Lett. 2020, 3, 64-68; b) P. Ji, Y. Song, T. Drake, S.
 S. Veroneau, Z. Lin, X. Pan, W. Lin, J. Am. Chem. Soc. 2018, 140, 433-440.
- [4] S. Friebe, A. Mundstock, D. Unruh, F. Renz, J. Caro, J. Membr. Sci. 2016, 516, 185-193.

- [5] Y. Sun, Y. Liu, J. Caro, X. Guo, C. Song, Y. Liu, Angew. Chem. Int. Ed. Engl. 2018, 57, 16088-16093.
- [6] H. Assi, G. Mouchaham, N. Steunou, T. Devic, C. Serre, *Chem. Soc. Rev.* 2017, 46, 3431-3452.
- [7] Z. Qiao, Y. Liang, Z. Zhang, D. Mei, Z. Wang, M. D. Guiver, C. Zhong, *Adv. Mater.* 2020, 32, e2002165.
- [8] T. H. Lee, J. G. Jung, Y. J. Kim, J. S. Roh, H. W. Yoon, B. S. Ghanem, H. W. Kim, Y. H. Cho, I. Pinnau, H. B. Park, *Angew. Chem. Int. Ed. Engl.* **2021**, *60*, 13081-13088.
- [9] J. Yan, Y. Sun, T. Ji, L. Liu, M. Zhang, Y. Liu, J. Membr. Sci. 2021, 635, 119515.
- [10] a) V. Guillerm, S. Gross, C. Serre, T. Devic, M. Bauer, G. Ferey, *Chem. Commun.* 2010, *46*, 767-769; b) D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. Andre, K. Dahmouche, V. D. Z. Bermudez, Y. Messaddeq, S. J. L. Ribeiro, L. D. Carlos, *Chem. Mater.* 2008, *20*, 3696-3705.
- [11] Y. Keum, S. Park, Y.-P. Chen, J. Park, Angew. Chem. Int. Ed. 2018, 57, 14852-14856.
- [12] S. Wang, H. Reinsch, N. Heymans, M. Wahiduzzaman, C. Martineau-Corcos, G. De Weireld, G. Maurin, C. Serre, *Matter* **2020**, *2*, 440-450.
- [13] S. Hu, M. Liu, X. Guo, K. Li, Y. Han, C. Song, G. Zhang, Cryst. Growth Des. 2017, 17, 6586-6595.
- [14] T. Frot, S. Cochet, G. Laurent, C. Sassoye, M. Popall, C. Sanchez, L. Rozes, *Eur. J. Inorg. Chem.* **2010**, 2010, 5650-5659.
- [15] G. C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, K. P. Lillerud, *Chem. Mater.* **2016**, *28*, 3749-3761.
- [16] Ü. Kökçam-Demir, A. Goldman, L. Esrafili, M. Gharib, A. Morsali, O.
- Weingart, C. Janiak, Chem. Soc. Rev. 2020, 49, 2751-2798.
 [17] J. N. Hall, P. Bollini, React. Chem. Eng. 2019, 4, 207-222.
- [18] S.-N. Kim, J. Kim, H.-Y. Kim, H.-Y. Cho, W.-S. Ahn, *Catal.Today* 2013, 204, 85-93.
- [19] S. Hong, D. Kim, H. Richter, J.-H. Moon, N. Choi, J. Nam, J. Choi, J. Membr. Sci. 2019, 569, 91-103.
- [20] L. M. Robeson, J. Membr. Sci. 2008, 320, 390-400.
- [21] a) B. A. Al-Maythalony, O. Shekhah, R. Swaidan, Y. Belmabkhout, I. Pinnau, M. Eddaoudi, J. Am. Chem. Soc. 2015, 137, 1754-1757; b) D. S. Chiou, H. J. Yu, T. H. Hung, Q. Lyu, C. K. Chang, J. S. Lee, L. C. Lin, D. Y. Kang, Adv. Funct. Mater. 2020, 31, 2006924; c) X. Liu, N. K. Demir, Z. Wu, K. Li, J. Am. Chem. Soc 2015, 137, 6999-7002; d) Y. Liu, G. Zeng, Y. Pan, Z. Lai, J. Membr. Sci. 2011, 379, 46-51; e) R. Rong, Y. Sun, T. Ji, Y. Liu, J. Membr. Sci. 2020, 610, 118275; f) M. N. Shah, M. A. Gonzalez, M. C. McCarthy, H.-K. Jeong, Langmuir 2013, 29, 7896-7902; g) W. Wu, Z. Li, Y. Chen, W. Li, Environ. Sci. Technol. 2019, 53, 3764-3772; h) H. Yin, J. Wang, Z. Xie, J. Yang, J. Bai, J. Lu, Y. Zhang, D. Yin, J. Y. Lin, Chem. Commun. (Camb) 2014, 50, 3699-3701; i) R. W. Baker, B. T. Low, Macromolecules 2014, 47, 6999-7013; j) M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, B. D. Freeman, Macromolecules 2017, 50, 7809-7843; k) T. H. Lee, A. Ozcan, I. Park, D. Fan, J. K. Jang, P. G. M. Mileo, S. Y. Yoo, J. S. Roh, J. H. Kang, B. K. Lee, Y. H. Cho, R. Semino, H. W. Kim, G. Maurin, H. B. Park, Adv. Funct. Mater. 2021, 31, 2103973; I) U. W. R. Siagian, A. Raksajati, N. F. Himma, K. Khoiruddin, I. G. Wenten, J. Nat. Gas Sci. Eng. 2019, 67, 172-195; m) Y. Wang, H. Jin, Q. Ma, K. Mo, H. Mao, A. Feldhoff, X. Cao, Y. Li, F. Pan, Z. Jiang, Angew. Chem. Int. Ed. Engl. 2020, 59, 4365-4369; n) S. Jiang, X. Shi, F. Sun, G. Zhu, Chem. Asian J. 2020, 15, 2371-2378; o) S. Jiang, X. Shi, Y. Zu, F. Sun, G. Zhu, Mater. Chem. Front. 2021, 5, 5150-5157; p) Y. Ying, Z. Zhang, S. B. Peh, A. Karmakar, Y. Cheng, J. Zhang, L. Xi, C. Boothroyd, Y. M. Lam, C. Zhong, D. Zhao, Angew. Chem. Int. Ed. 2021, 60, 11318-11325.
- [22] Y. Song, Y. Sun, D. Du, M. Zhang, Y. Liu, L. Liu, T. Ji, G. He, Y. Liu, J. Membr. Sci. 2021, 634, 119393.
- [23] F. Zhang, X. Zou, X. Gao, S. Fan, F. Sun, H. Ren, G. Zhu, Adv. Funct. Mater. 2012, 22, 3583-3590.
- [24] B. S. Ghanem, R. Swaidan, X. Ma, E. Litwiller, I. Pinnau, *Adv.Mater*. 2014, 26, 6696-6700.
- [25] Q. Song, S. Jiang, T. Hasell, M. Liu, S. Sun, A. K. Cheetham, E. Sivaniah, A. I. Cooper, *Adv. Mater.* **2016**, 28, 2629-2637.
- [26] Y. Sun, C. Song, X. Guo, S. Hong, J. Choi, Y. Liu, J. Membr. Sci. 2020, 616, 118615.

RESEARCH ARTICLE

Entry for the Table of Contents

With the titanium-oxo cluster $Ti_8(\mu_2-O)_8(OOCC_6H_5)_{16}$ as the titanium source, a MIL-125 metal-organic framework (MOF) membrane was prepared under mild reaction conditions through combining single-mode microwave heating with tertiary growth. Using this titanium source and maintaining a lower reaction temperature increased the missing-linker number in the MIL-125 framework and therefore enhanced the CO_2/N_2 selectivity.